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Preface

This report was prepared by the Coastal Engineering Research Center
(CERC) at the U.S. Army Engineer Waterways Experiment Station (WES)
and is a product of the Los Angeles and Long Beach Harbors Model
Enhancement (HME) Program. The HME Program has been conducted
jointly by the Ports of Los Angeles and Long Beach (LA/LB); the U.S. Army
Engineer District, Los Angeles (SPL); and WES. Th'e purpose of the HME
Program has been to provide state-of-the-art engineering tools to aid in port
development. In response to the expansion of oceanborne world commerce,
the Ports of LA/LB are conducting planning studies for harbor development in
coordination with SPL. Ports are a natural resource, and enhanced port
capacity is vital to the Nation's economic well-being. In a feasibility study
being conducted by SPL, the Ports of LA/LB are proposing a well-defined
and necessary expansion to accommodate needs predicted for the near future.
The Corps of Engineers will be charged with responsibility for providing
deeper channels and determining effects of this construction on the local
environment. This includes changes in harbor resonance caused by expansion
and channel deepening.

The investigation was conducted during the period January 1990 through
September 1991 by personnel of the Wave Processes Branch (WPB), Wave
Dynamics Division (WDD), and the Research Division (RD), CERC. WPB
was included in the study by Mr. William C. Seabergh, under the direct
supervision of Mr. Douglas Outlaw, former Chief, WPB, and Mr. Dennis G.
Markle, current Chief, WPB, and Mr. C. E. Chatham, Chief, WDD. RD
personnel involved in the study were Dr. S. Rao Vemulakonda and Mr. David
J. Mark, under the direct supervision of Dr. Martin C. Miller, Chief, Coastal
Oceanography Branch, and Ms. Lucia W. Chou, under the direct supervision
of Mr. Bruce A. Ebersole, Chief, Coastal Processes Branch. Mr. H. Lee
Butler was Chief, RD. Mr. Seabergh and Dr. Vemulakonda, with the
assistance of Mr. Mark and Ms. Chou, prepared the report. Ms. Debbie
Fulcher, WPB, assisted in preparation of the final report. Overall CERC
management of the HME Program was furnished by Messrs. Outlaw and
Seabergh, and this study was conducted under the general supervision of
Dr. James R. Houston, Director, CERC, and Mr. Charles C. Calhoun, Jr.,
Assistant Director, CERC.
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During the course of the study, significant liaison was maintained between
WES, SPL, and the Ports. Mr. Dan Muslin, followed by Mr. Angel P.
Fuertes, Mr. Mike Piszker, and then Ms. Jane Grandon were SPL points of
contact. Mr. John Warwar, Mr. Dick Wittkop, and Ms. Lillian Kawasaki,
Port of Los Angeles, and Mr. Michael Burke, followed by Mr. Angel Fuertes
and Dr. Geraldine Knatz, Port of Long Beach, were Ports of LA/LB points of
contact and provided invaluable assistance.

Dr. Robert W. Whalin was Director of WES at the time of publication of
this report. COL Bruce K. Howard, EN, was Commander.
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Conversion Factors, Non-SI
to SI Units of Measurement

Non-SI units of measurement used in this report can be converted to SI units
as follows:

Midl By To Obtain

oubic foot 0.028317 cubic meters

degrees (angle) 0.01745329 radiens

feet 0.3048 meters

miles (US statute) 1.6093 kilometers

miles per hour (mph) 0.4470 metors per second

squere Mile 2.590 square kilometer

vi



1 Introduction

Background

Los Angeles and Long Beach Harbors (Figure 1) are located adjacent to
each other in San Pedro Bay on the southern California coast. They share a
common breakwater system. Ocean waters circulate into, out of, and between
both harbors due to the action of tides and wind. Angel's Gate and Queen's
Gate are the two major entrances to the harbors, in addition to an opening at
the eastern end. As these ports respond to the expansion of oceanborne world
commerce and propose plans to accommodate future needs (including deeper
channels and landfills), environmental impacts (including impacts on
circulation) must be examined. Approaches to examine plan impacts include
modeling, and in the cases of Los Angeles and Long Beach Harbors, there
have been several numerical model studies of tidal circulation (Chiang and
Lee 1982, Seabergh and Outlaw 1984, Seabergh 1985). Most of the previous
numerical circulation studies were performed using depth-averaged models
such as WIFM (Butler 1980) and using only tides for forcing. Recently, the
ports, together with the U.S. Army Engineer District, Los Angeles and the
U.S. Army Engineer Waterways Experiment Station (WES), embarked on a
Harbors Model Enhancement (HME) Program. The program is outlined in
Table 1. As a part of HME, the Coastal Engineering Research Center
(CERC) of WES calibrated and verified a three-dimensional (3D)
hydrodynamic model with field data. The model was forced with tides and
wind, using measured surface elevations at the offshore boundary. The results
of these efforts are described in Vemulakonda and Butler (1989), and CERC
(1990). As a follow-up to this work, the effects of different winds on
circulation in the harbors were examined (using the same 3D numerical
hydrodynamic model and the same 1987 harbor configuration). This report
describes the results of these model simulations.

Chapter 1 Introduction



Table I

Tasks of the Harbors Model Enhancement Program

A. Hlrbr Resonance and hi Motion

Wave Date Acquisition

Wave Data Analysis

Harbor Resonance Analysis

Ship Motion Data Collection and Analysis

Ship Motion Model Development, Calibration and Verification

Improved Physical Model Harbor Resonance

S. Tidal circulation

Data Acquisition

Circulation Transport Modeling

Water Quality Evaluation Model

Wind-Driven Circulation Analysis

C. Prolat Management

D. SPL Coordination

Objective

This report is the second in Task B.4, "Wind-Driven Circulation
Analysis," of the Model Enhancement Program. The first report (Smith 1989)
examined a prototype data set gathered in the harbors by the National Oceanic
and Atmospheric Administration in the summer of 1983. That data set
consisted of tidal current measurements, tidal elevations, and local wind
measurements. The present report will summarize winds over the harbors and
examine, with the aid of a calibrated numerical model, the effects of various
wind conditions on circuItion throughout the harbors.

Chapter 2 discusses typical wind conditions, Chapter 3 describes selection
of test conditions, Chapter 4 presents the numerical hydrodynamic model
applied in this study, Chapter 5 examines tests and analysis performed, and
Chapter 6 presents conclusions. For convenience, the abbreviations LA and
LB will be used throughout this report to indicate Los Angeles and Long
Beach, respectively.

2 Chapter 1 Introduction
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2 Winds Over the Harbors

Typical Conditions

"The basic feature of the wind pattern fbr the harbors is a land-sea breeze
regime caused primarily by differential heating of water and land. In
summer, this pattern is characterized by onshore winds from west to
southwest during the day, peaking at about 20 mph.' Onshore wind can
persist throughout the night. From Figure 1 it can be seen that these onshore
winds move along the wider axis of the outer harbor of both ports, i.e., from
a westerly direction. Figure 2 shows onshore winds predominating from
1-19 July 1988. The direction shown is the direction from which wind is
blowing, measured clockwise from true north. The 22 June - 20 July 1988
wind rose (Figure 3) illustrates this onshore predominance. Figure 3 shows a
cumulative plot of measurements near Angel's Gate indicating the predominant
wind direction from 240-260 deg. Because wind measurements shown in
Figures 2 and 3 were collected on the San Pedro breakwater, they are
representative of winds over the harbors' water surface. Typically the daily
duration of onshore winds reduces as daily temperatures reduce in cooler
seasons. The 16 October - 13 November 1985 wind rose (Figure 3) shows
that even in fall/winter the onshore southwest winds are still an important
component of the wind pattern. However, strong winds from the southeast
and north-northwest, associated with approaching and passing frontal
conditions, respectively, become important with regard to winter wind patterns
and are the dominant winds in the October - November wind rose. Northwest
winds are intensified for several days after passage of a front, with sustained
winds of up to 25 mph being common. "Hurricane Gulch" is a commonly
used term to describe the stronger westerly winds from Cabrillo to Seal
Beach, due to the northwest winds whipping around Palos Verdes2.

I A table of factors for converting non-Sl units of measurement to SI units is presented on
page vi.
2 Personal Communication, August 1993, Jane Grandon, Civil Engineer, U.S. Army Engineer

District, Los Angeles, Los Angeles, CA.
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Figure 3. Seasonal wind roses and cumulative wind speed directional distribution measured
at San Pedro breakwater near Angel's Gate
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Wind Data Examined

At the time of this study, there was not a truly comprehensive
meteorological station being operated in the harbors, so that data sources were
sometimes difficult to access, or data were in a format that was difficult to
handle (e.g., strip chart records). Wind data examined included those from
the Headquarters buildings of the Port of Los Angeles (POLA) and the Port of
Long Beach (POLB), the Los Angeles Pilot Station and the Los Angeles
breakwater, the Los Angeles International Airport, and the Long Beach
Airport, as shown in Figures 4 and 5. Data from the airports are
comprehensive but may not be truly representative of the wind conditions over
the harbors as Figure 6 shows, which compares data at the breakwater and the
Long Beach Airport. Figure 7 compares monthly average wind conditions at
the Los Angeles and Long Beach Airports, which indicates lower average
winds at Long Beach Airport, 5 miles inland. The Los Angeles Airport is
adjacent to the ocean, but differences in wind direction exist between this
airport and the harbors. This is due to change in shoreline orientation and
existence of hilly terrain just west of the harbors (as can be noted in
Figure 4), which are important factors affecting the daily shoreward winds.

Data gathered by WES on the San Pedro breakwater near Angel's Gate
from July 1984 to November 1988 are probably the most representative of
winds directly over harbor waters. The monthly summary roses are included
as Plates I - 26. Bar charts summarizing the data by months are included in
Appendix A. These data do not cover the entire period from July 1984 to
November 1988, due to occasional equipment problems and logistical
problems associated with funding constraints; however, they appear to
represent seasonal variations in patterns. The anemometer was 30 ft above
water and sampled data every one-half hour. Wind conditions selected for
model testing described in this report were obtained from this data set.

An analysis was performed to examine strong winds and gustiness using
strip chart records of wind speed and direction recorded at the Los Angeles
Harbor Pilots' Station (Figure 4). Data from 27 September 1976 through
2 February 1983 were examined, and for maximum hourly gusts (where a
gust is defined here as a rapid rise - a minute or less - in wind speed and a
similar decline), the gust direction and the average hourly wind speed and
direction were determined. A total of 438 events occurred, with most of the
lower values reflecting afternoon onshore winds from the west and southwest.
The higher wind speeds and gusts were from the east and southeast, associated
with approaching fronts. The upper portion of Figure 8 shows maximum
hourly gusts during high gust conditions (typically greater than 20 mph)
versus average hourly wind speed. A linear relation between gust strength,
G (in mph), as defined above, and average hourly wind speed, W (in mph),
was determined to be

G= 1.1W + 6.1

This type of information, though not critical to effects on circulation in the
harbors, may be important to ship handling and the roll motion of moored

7
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ships. It does, however, indicate that stronger, more turbulent, wind events
approach from the east to southeast direction, as noted in the lower portion of
Figure 8.

Santa Ana winds describe the high sustained winds that can occur when a
strong high pressure system is located over the western United States,
typically centered on Nevada and Utah. This occurs after a front has moved
inland through northern California and Nevada followed by a Pacific high.
Generally winds approach from the northeast, but they can be locally affected
by topography. Santa Anas typically occur from November through January.
Favored courses of Santa Ana winds are shown in Figure 9, a Weather
Service sketch (Kurtz 1977). Santa Ana winds of 64 mph did significant
damage to the harbors in 1933 (Marine Advisers, Inc. 1965). Figure 10
shows winds with peak velocities of 24 mph that occurred on the breakwater
when Santa Ana winds were 80 mph inland. These winds approached the
harbors from the northeast, or 45 deg.

Winds due to tropical storms or hurricanes have reached the harbors only a
few times since weather records have been kept. Typically these form near
the equator south of the Gulf of California in July, August, and September,
moving west to northwest. Usually high pressure centers north of the
hurricane keep it moving away from the coast of Mexico and Southern
California. In 1921, 1929, and 1939 (in September in each case) hurricanes
advanced to the Southern California coast, with only the 1939 hurricane
reaching San Pedro Bay, causing significant damage in the vicinity of the
harbors.

8 Chapter 2 Winds Over the Harbora
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Figure 5. Airport wind measurement location
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Wind Gust vs Max Hourly Average
Sept 1976-Feb 1983
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3 Selection of Wind and Tide
Test Conditions

Based on examination of wind data in Chapter 2, the most significant types
of wind conditions with respect to harbor circulation were selected. The
previous calibration and verification of the model considered only strong
summer diurnal winds.

In this report, four wind conditions are considered. The first is a summer
condition characterized by the calibration period in which winds exhibit a
typical diurnal cycle with strong afternoon onshore winds. This is called the
"existing condition." It was of interest to contrast this condition with a
"no-wind" condition to help understand the effect of winds on harbor
circulation and provide information about circulation when winds are low,
though the diurnal wind cycle is the dominant wind pattern. Next the
calibration wind field was shifted in time by 10 hr so the maximum wind
speeds coincide with the long ebb flow of higher high water to lower low
water rather than the slower flood flow conditions of lower high water to
higher high water used in calibration. This is identified as Case 1. Figure 11
shows this wind condition, with time measured from 0000 hr on 1 January
1987 (Pacific standard time). Note 5232 hr corresponds to 0000 hr on
7 August 1987. Direction shown, in degrees from north, i.e., 0 deg is from
north, +90 deg is from east, and -90 deg is from west, etc., is the direction
from which the wind was blowing. The measured water surface elevation at
the offshore boundary used in the calibration is also shown in Figure 11.
Following Case 1, two wind conditions (Cases 2 and 3) associated with strong
frontal systems were investigated. Case 2 was for winds from the southeast
and Case 3 for northwest winds. These selected events are described in detail
in Chapter 5. Tidal conditions used for Cases 2 and 3 were the same as for
Case 1 (and the model calibration) since no prototype boundary tidal
conditions were available for these events. This was probably not significant
for Case 2 since wind was from the southeast, from the ocean toward the
harbors, as calibration winds were from ocean to harbors. For Case 3, winds
were from the northwest, from the harbors to the ocean, so boundary effects
may be present due to the significant change in wind-field orientation.
However, the focus of the study was on harbor circulation behind the
breakwaters, distant from the boundary, which should permit a reasonable

16 Chapter 3 Selection of Wind and Tide Test Conditions



understanding of the effects of northerly winds on harbor circulation until
prototype tidal information can be collected during fall-winter events.
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TIME {IHRS)

Figure 11. Wind and ocean boundary conditions for Case 1
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4 The Computational Model

"The hydrodynamic model used was a modified version of the CH3D model
developed originally by Sheng (1986), with many changes having been made
by WES. The model can simulate time-varying 3D hydrodynamics due to
tides, wind, river inflow, and density currents induced by salinity and
temperature gradients. In the horizontal plane, computations can be made on
Cartesian or boundary-fitted grids. In the vertical, the model employs sigma
stretching, which permits the same number of layers in shallow and deep
portions of the water body. As depths increase, the vertical extent of each
layer increases proportionately. Johnson et al. (1989) give additional details.

Numerical Grid

In the horizontal, a variable, rectilinear grid, which has sufficient
resolution and which was successfully used in previous WES studies of the
harbors (Seabergh 1985), was used (Figure 12). The grid had a total of
12,032 horizontal cells (128 cells in the east-west direction and 94 cells in the
north-south direction) and was aligned to coincide with the Inner Harbor
entrance channels. Minimum cell width was 235 ft. The grid extended
4.2 miles seaward of the middle breakwater and covered an area of
approximately 146 square miles. In the vertical, after some sensitivity testing,
three sigma-stretched layers were used.

Calibration and Verification

After a careful review of the field data collected in 1987 (McGehee et al.
1989), the periods of 7-11 August and 19-23 August were selected for calibration
and verification of the model. The earlier period represented a large spring
tide condition, while the later period was near a mean tide. Measured surface
elevations at an offshore tide gauge were used for the ocean boundary
condition and already contained the effects of winds. Wind data (velocity,
magnitude, and direction) measured north of the Los Angeles main channel
entrance were used for model calibration and verification. On the basis of
sensitivity tests, the winds in the model were blocked off for inner harbor
channel cells to account for protection due to structures in the surrounding
area, which is highly industrialized. Winds over the rest of the study area
were assumed to be spatially uniform but varying in time. On the basis of

18 Chapter 4 The Computational Model



several sensitivity runs, the following values were finally selected for model
coefficients and parameters for calibration: Manning's n=0.02, horizontal
eddy coefficient AH= 2 0 ,000 cm2/sec, and vertical eddy coefficient Av= 10
cm 2lsec. A time-step of 60 sec was used for both external and internal
modes. The wind drag coefficient was selected according to Garrat (1977).
Additional details are given in CERC (1990).

Figure 12. Model grid and location of prototype current meters

19
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5 Model Simulations

Circulation for No Wind and Case 1

To determine circulation patterns, velocity vectors were plotted at each
vertical layer (surface, mid-depth, and bottom) at every third cell. Figure 13
shows model results at hr 5283 (lower-low water condition following the long
ebb runout). In Figure 13, the top plots are for a no-wind condition and the
bottom plots are for Case 1, with wind actively blowing over the harbors at
hr 5283. The plots for no wind show a gyre in the outer harbor, set up by
countering flows through Angel's Gate and the West Basin (Ranges 1 and 3
respectively, Figure 14). The gyre becomes stronger from the bottom to the
surface. This circulation was typical of previous two-dimensional (2D)
studies. An apparent net eastward (eft to right in Figure 13) movement is
seen in the region behind the middle breakwater. Note the relatively low
velocities. Even during times of maximum ebb and flood flow, currents in
the harbors are generally less than 1 fps. Only currents through the entrances
exceed that level during strength of tide. The "active wind field" (Case 1)
snapshots indicate a strong easterly surface flow with increasing counterflow
(westward) in the mid-depth and bottom layers. In the western and central
regions of the harbor adjacent to the breakwaters, bottom currents toward the
west are predominant.

The net bidirectional flow pattern (Case 1, surface flow toward the east
and bottom currents toward the west) demonstrated by the 3D model is seen in
prototype data also. Two summer months of data collected in 1987 at two
moored current meters (CM6 and CM7, locations shown in Figure 12)
support the model result (Figure 15). Current meter CM6S just inside
Queen's Gate shows strong net easterly flow on the surface. The bottom
currents (CM6B) exhibit more diversity in direction due to their proximity to
the harbor entrance at Queen's Gate. Gauge CM7S shows net easterly surface
current and CM7B shows net westerly bottom current on the eastern side of
the harbors.

An interesting comparison can be made between results for net circulation
obtained with the present 3D simulation with wind (existing condition) and the
2D, no-wind, tide-only simulations used in previous WES studies of the
harbors (Table 2). For the 2D case. net flow is from the ocean into the
harbors through Angel's and Queen's Gates and out through the east

20 Chapter 5 Model Simulations
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breakwater gap. For the 3D case, net flow is smaller and from the ocean into
the harbors through Angel's Gate and out through Queen's Gate and the east
breakwater gap. Thus 2D model results, in terms of flow volumes at the
three harbor entances, indicate a stronger net circulation to the east than
given by the 3D model. This is contrary to the normal expectation that the
inclusion of net eastward-directed winds in the 3D model would promote a
stronger net circulation to the east. This behavior may be explained by the
fact that the relatively deep nature of the harbors permits the return flow of
water to Angel's Gate and Queen's Gate, rather than major net movement
toward the east breakwater gap, as would be true for a shallow harbor.

Table 2
Distribution of Net Flow Into (+ or Out of (-1 Harbor a a Percent
of Total Flow Volume Into Harbor

Looadon (Ifanpe) 31) Model 2D Model

Angel's Gate (1) 4 7

Oueen's Gate (6) -3 9

East Gap (7) -1 1-1

Case 1 versus Existing Condition

The Case 1 shift of 10 hr in the timing of wind (so that maximum winds
occurred during strongest ebb flow) produced changes in discharges in the outer
harbor (Range 5, Figure 16 and Plate 31) and at harbor gates (Ranges 1, 6, and
7, Plates 27, 32, and 33, respectively). Other discharge ranges in the inner
harbor showed no change (Plates 28-30). Positive discharge is eastward at
Ranges 4 and 5, and northward at the other ranges. Downward arrows in Figure
16 indicate when maximum wind was blowing for each condition. It is clear that
at Range 5, whenever the wind velocity for a particular condition was at its peak,
the discharge was greater than the discharge for the other condition. Comparing
the two curves, one can estimate that the net effect over several days is close to
zero; i.e. the occurrence of westerly winds relative to the phase of tidal currents
has no significant effect except in the short term. When strong westerly winds
occur during flood flows, discharges are increased slightly through Angel's Gate
and decreased at the east breakwater gap, enhancing eastward flow. When strong
westerly winds occur during ebb flow, ebb discharge is decreased at Angel's Gate and
increased at the east breakwater gap, once again enhancing net eastward flow.

Figure 17 shows locations where current magnitude and direction measurements
were sampled for the three layers. Layers 1, 2, and 3 correspond to bottom,
mid-depth, and surface currents, respectively. Examination of Plates 34-54 shows
only small changes in velocities and direction. Plates 55-58 indicate no change in
tidal elevations. The existing condition data plots directly on top of the Case 1
data. Plates 59-70 show the current vector snapshots for various tidal conditions
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Figure 16. Discharge through Range 5 for Case 1

for the three layers (or levels). Plates 59-61 at hr 5283 show currents at low
water, Plates 62-64 Show mid-tide flood currents at hour 5298, plates 65-67
show slack highwater currents at hr 5301, and plate 68-70 show ebb currents
at hr 5304. These current snapshots can be compared with results for Cases 2
and 3, as the patterns are very similar to those of the existing condition tests.

Case 2: Winds from the Southeast

The wind speed and direction for this case are based on a prototype event
of 15-18 December 1987. Figure 18 shows the large pressure drop associated
with this system. Figure 19 shows wind speed and direction derived from
smoothing the actual data. The winds start at 5242 hr and build up over 18 hr
from zero speed to a maximum of 31 mph, which remains constant for 6 hr
from a direction of 115 deg. During the next 36 hr, wind speed drops to
12.5 mph and direction changes to 0 deg (from the north). Thereafter, the
northerly winds continue at 10 mph. The timing of peak winds was selected
to be in phase with the flood tide.

For this case, discharges across major ranges were compared with those
for existing conditions; that is, results for the model calibration with summer
winds (Plates 71-77, see Figure 14 for locations). Comparisons show that the
effects of winds predominate over those of tides. Over a 40- to 60-hr period
from 5240 to 5300 hr, there is only net inflow up to 350,000 cfs through the
east breakwater gap (Plate 77) and net outflow through Angel's (Plate 71) and
Queen's Gates (Plate 76) with maximum flows of 280,000 and 165,000 cfs,
respectively. In the outer harbor, flow is directed west during this period
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Figure 19. Wind conditions for Case 2
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with a maximum discharge of 220,000 cfs through Range 5 (Figure 20), and
net flow volume during this event, through Range 5, about equal to that of the
total harbor volume. Circulation in inner harbor channels is clockwise from
Los Angeles to Long Beach, in contrast to counterclockwise circulation for
existing conditions.

Time series of velocity (Plates 78-98) indicate that at the harbor entrances,
velocities at the surface layer are large (3.5 to 4 fps; Plates 92, 95, and 98).
At the East breakwater (Gauge 5), currents in the bottom layer (Plate 90) are
out of the harbors and currents in the mid-depth and surface layers (Plates 91,
92 and Figure 21) are into the harbors. At Angel's and Queen's Gates
(Gauges 18 and 19), currents in the bottom and mid-depth layers (Plates 93-94
and 96-97) are out of the harbors. In the surface layer (Plates 95 and 98),
currents may be either into or out of the harbors, depending on the phase of
the tide. The tidal signature can be seen clearly in the plots for velocities and
discharges. Generally, there is a transition in velocity magnitude and
direction from top to bottom. Large changes in velocity magnitude, from
0.8 fps (existing) to 2.5 fps (Case 2), also are observed in the Long Beach
Channel and near the entrance to Long Beach's west basin (Gauges 4 and 3,
respectively; see Figure 17 for locations). They may be attributed partly to
the fact that the southeast winds are approximately aligned with the channel.
A weak circulation gyre is noticeable at all three levels in the Long Beach
West Basin.

Tidal elevations (Plates 99-103) indicate only slight variations, primarily
during maximum wind velocities (hr 5260-5266). Snapshots of velocity
vectors (Plates 104-118) taken at hr 5257, 5263, 5272, 5296, and 5308 show
the effect of the rising winds followed by falling winds. It is clear that a
return to near normal circulation does not occur until hr 5308, about two days
after peak winds.

Case 3: Winds from the Northwest

Wind speed and direction for Case 3 are based on a 22-26 December 1987
event (Figure 22) where the actual data have been smoothed. This event
followed that examined in Case 2. Winds started at 5260 hr and built up over
18 hr to 31 mph (direction 0 deg). Speed remained constant for 6 hr and later
dropped to 5 mph over 72 hr. Direction stayed the same throughout. Timing
of the peak winds was chosen to be in phase with the ebb tide.

In this case also, wind dominated the tide but, overall, this event does not
have as much impact on harbor circulation as Case 2. As for the other cases,
the results for this case are complicated by several factors, including the
temporal variation of wind speed, direction, and phase of tide, the presence of
three separate entrances, and vertical variation. Because discharges reflect the
vertically integrated effects of the forcing, their variation is shown in
Plates 119-125. In general, there are two different circulation regimes, with
the transition occurring between 5280 and 5290 hr. In the early regime, there
is net inflow through Angel's and Queen's Gates (Plates 119 and 124) and
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Figure 20. Discharge through Range 5 for Case 2
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outflow through the east breakwater gap (Plate 125). Consequently, the flow
at the Middle Harbor (Plate 123) is directed east. In the later regime, there is
outflow through Angel's and Queen's Gates and inflow through the east
breakwater gap, with the result that flow at the Middle Harbor is directed
west. During peak winds, net flow through the Middle Harbor is four times
the normal eastward flow and maximum ebb discharge at the east breakwater
gap is doubled to 300,000 cfs. The longer term effect on discharges for Case
3, when compared to Case 2 (for example, Plate 125 compared to Plate 77),
results because of the slower decline in wind speed and the steady wind
direction for Case 3.

Time series of velocity (Plates 126-140; plots for Gages 18 and 19 are not
included) show that at all three entrances, velocity magnitude increases at all
three layers. Strong surface currents (order of 3 to 4 ftl/sec) are directed in.
Dramatic velocity change is observed at the entrance to the West Basin
(Gauge 3, Plates 132-134) also. Tidal elevation plots (Plates 141-145) show
no signifi-ant change in surface elevation. Snapshots of velocity vectors
(Plates 146-157) are included. Figure 24 shows the current pattern at all three
levels at 5278 hr. In general, the snapshots show that during peak winds,
suriace c£rt nts in the Outer Harbor are southward whereas bottom and
mid-depth currexits are northward. In general, some minor effects due to
reflections from2 0a offshore boundary may be present in model results for the
later part of the simulatioti. They do not change the main conclusions
reported here.

Effect of Wind on Circulation in Ship Basins

As shown above, wind events can have significant effects on circulation in
harbors. However, it is important to note that everyday wind conditions can
contribute to improved circulation in closed-end ship basins. Figure 25
compares a no-wind condition with the calibration condition, which includes
typical winds from the west-southwesterly direction. The example shown is
for Scheme B, Phase 1 of the Operations, Facilities, and Infrastructure 2020
Requirements Study. Surface currents are aligned with the wind. Examining
some of the closed slips, especially the one adjacent to Pier 300, surface
currents are into the basin, while mid-depth and bottom currents are exiting
the basin, indicating a turning over of the water mass. In contrast, for the
no-wind situation, currents are slower and unidirectional.
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6 Summary and Conclusions

Simulations of harbor circulation with a 3-D hydrodynamic model indicate
the following:

a. For no-wind conditions, there is a gyre in the LA/LB outer harbor,
which becomes stronger from bottom to top, and a net eastward flow
through the harbors.

b. For typical summer winds from the southwest, the surface gyre in the
outer harbor is eliminated when winds are actively blowing and reduced
when winds are not; the gyre is present at mid-depth and increases in
strength at the bottom when winds are actively blowing; net eastward
flow through the harbors is not increased by typical winds from the
southwest; phasing of winds with respect to tides (Case 1) does not
significantly alter circulation patterns over the longer term (order of
days).

c. For Case 2, corresponding to strong winds (31 mph) from the
southeast, associated with an approaching front, the effects of winds
predominate over those of tides; over a 40- to 60-hr period, there is
only inflow through the east breakwater gap and outflow through
Angel's and Queen's Gates, a dramatic change from existing conditions.

d. For Case 3, corresponding to strong winds (31 mph) from the
northwest, winds dominate the tide, with velocities at the surface
generally directed out of the harbors, and velocities at bottom and
mid-depth directed in. Major changes are observed in net flow at
Range 5 through the center of the outer harbor and the east breakwater
gap as well as velocities at the entrances, compared with existing
conditions.

e. In summary, effects of winds on harbor circulation can be significant,
with circulation during storms (such as Cases 2 and 3) being
dramatically different from that for normal summer winds. This should
be duly taken into account in harbor design and operation.
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